DoITPoMS

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

Introduction To Anisotropy Introduction To Anisotropy
It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.
Atomic Force Microscopy Atomic Force Microscopy
Provides a brief introduction to atomic force microscopy (AFM), some of the ways it is commonly used and some of the problems faced.
Atomic Scale Structure of Materials Atomic Scale Structure of Materials
This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.
Avoidance of Crystallization in Biological Systems Avoidance of Crystallization in Biological Systems
This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.
Batteries Batteries
This TLP investigates the basic principles, design and applications of batteries. It covers both primary and rechargeable batteries, how they work and how they may be used.
Bending and Torsion of Beams Bending and Torsion of Beams
This teaching and learning package provides an introduction to the mechanics of beam bending and torsion, looking particularly at the bending of cantilever and free-standing beams and the torsion of cylindrical bars.
Brittle Fracture Brittle Fracture
What determines when a material will break, and whether failure will be catastrophic or more gradual. Cracking is controlled by the energy changes that occur - it is not the stress at the crack tip that is important..
Casting Casting
This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.
Creep Deformation of Metals Creep Deformation of Metals
Creep is a major concern in engineering, since it can cause materials to fail well below their yield stress. This package outlines the mechanisms of creep and the associated equations. It is largely based around a first year Materials Science practical at the University of Cambridge, which is concerned with the creep of solder at different temperatures. It also includes a case study of a creep-resistant material to illustrate how materials can be designed to prevent creep.
Crystallinity in Polymers Crystallinity in Polymers
An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.
Crystallographic Texture Crystallographic Texture
This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.
Crystallography Crystallography
Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.
Deformation of Honeycombs and Foams Deformation of Honeycombs and Foams
Highly porous materials, such as honeycombs, foams and fibrous structures, are an important class of material in both synthetic and biological systems. They are used in many different ways, but their mechanical behaviour is often of great importance as they are pressed, bent, sat on or chewed. An important class of these materials can be considered as made up of cells, so-called cellular structures. Here we describe how these materials deform, elastically and irreversibly.
Diffraction and Imaging Diffraction and Imaging
A brief summary of diffraction and imaging using an optical system.
Diffusion Diffusion
An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.
Introduction To Dislocations Introduction To Dislocations
Dislocations are crucially important in determining the mechanical behaviour of materials. This teaching and learning package provides an introduction to dislocations and their motion through a crystal. A 'bubble raft' model is used to demonstrate some of the features of dislocations and other lattice defects. Some methods for observing real dislocations in materials are examined.
Elasticity in Biological Materials Elasticity in Biological Materials
This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.
Electromigration Electromigration
Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.
Epitaxial Growth Epitaxial Growth
This TLP enables you to explore the way in which perfect thin crystalline layers are deposited epitaxially (i.e. in the same crystal orientation) on semiconductor substrates. This is the way many electronic and opto-electronic devices are now fabricated using techniques such as molecular beam epitaxy (MBE).
Fuel Cells Fuel Cells
This teaching and learning package provides a short summary of four of the most promising fuel cell technologies. It gives a general overview of the field with focus on materials used (electrolytes and electrodes) and the mechanism of function (electrochemistry and thermodynamics).
The Jominy End Quench Test The Jominy End Quench Test
Discusses the aims, method and use of results of a test for the hardenability of steel.
Kinetics of Aqueous Corrosion Kinetics of Aqueous Corrosion
This teaching and learning package (TLP) introduces the mechanism of aqueous corrosion and the associated kinetics.
Liquid Crystals Liquid Crystals
This Teaching and Learning Package provides an introduction to liquid crystals, their physical properties and their modern-day applications.
Introduction To Mechanical Testing Introduction To Mechanical Testing
This teaching and learning package is based on laboratory experiments used in the Department of Materials Science and Metallurgy at the University of Cambridge. The package looks at how the microstructure of a material can affect its properties. It is split into two experiments: the first part introduces tensile testing and stress-strain curves, while the second part uses three-point bending, as introduced in the Beam Stiffness TLP.
Mechanics of Fibre-reinforced Composites Mechanics of Fibre-reinforced Composites
This teaching and learning package (TLP) gives an introduction to the nature of fibre-reinforced composite materials and their basic mechanical characteristics.
Microstructural Examination Microstructural Examination
This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.
Phase Diagrams and Solidification Phase Diagrams and Solidification
Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.
Introduction To Photoelasticity Introduction To Photoelasticity
This tutorial is based on lab work within the Department of Materials Science and Metallurgy at the University of Cambridge. The tutorial provides an introduction to the topic of photoelasticity and preparation for lab work. Photographs illustrate many features of birefringence in polymers under polarised light.
Polymer Basics Polymer Basics
This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.
Solid Solutions Solid Solutions
This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.
Solidification of Alloys Solidification of Alloys
This teaching and learning package (TLP) is an introduction to how solute affects the solidification of metallic alloys.
The Stereographic Projection The Stereographic Projection
This TLP covers the use of the Stereographic projection and Wulff nets.
Superelasticity and Shape Memory Alloys Superelasticity and Shape Memory Alloys
This teaching and learning package (TLP) introduces the phenomena of superelasticity and the shape memory effect.
Tensors Tensors
This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.
Thermal Expansion and the Bi-material Strip Thermal Expansion and the Bi-material Strip
This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Young's Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.
X-ray Diffraction Techniques X-ray Diffraction Techniques
This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.