DoITPoMS

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

Introduction To Anisotropy
It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.
Atomic Scale Structure of Materials
This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.
Avoidance of Crystallization in Biological Systems
This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.
Brittle Fracture
What determines when a material will break, and whether failure will be catastrophic or more gradual. Cracking is controlled by the energy changes that occur - it is not the stress at the crack tip that is important..
Casting
This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.
Creep Deformation of Metals
Creep is a major concern in engineering, since it can cause materials to fail well below their yield stress. This package outlines the mechanisms of creep and the associated equations. It is largely based around a first year Materials Science practical at the University of Cambridge, which is concerned with the creep of solder at different temperatures. It also includes a case study of a creep-resistant material to illustrate how materials can be designed to prevent creep.
Crystallinity in Polymers
An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.
Introduction To Deformation Processes
This teaching and learning package covers the fundamentals of metal forming processes.
Diffraction and Imaging
A brief summary of diffraction and imaging using an optical system.
Diffusion
An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.
Introduction To Dislocations
Dislocations are crucially important in determining the mechanical behaviour of materials. This teaching and learning package provides an introduction to dislocations and their motion through a crystal. A 'bubble raft' model is used to demonstrate some of the features of dislocations and other lattice defects. Some methods for observing real dislocations in materials are examined.
Electromigration
Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.
Epitaxial Growth
This TLP enables you to explore the way in which perfect thin crystalline layers are deposited epitaxially (i.e. in the same crystal orientation) on semiconductor substrates. This is the way many electronic and opto-electronic devices are now fabricated using techniques such as molecular beam epitaxy (MBE).
Examination of a Manufactured Article
This TLP provides an introduction to the deconstruction and investigation of the materials and processes used in an everyday item or article.
The Jominy End Quench Test
Discusses the aims, method and use of results of a test for the hardenability of steel.
Liquid Crystals
This Teaching and Learning Package provides an introduction to liquid crystals, their physical properties and their modern-day applications.
Introduction To Mechanical Testing
This teaching and learning package is based on laboratory experiments used in the Department of Materials Science and Metallurgy at the University of Cambridge. The package looks at how the microstructure of a material can affect its properties. It is split into two experiments: the first part introduces tensile testing and stress-strain curves, while the second part uses three-point bending, as introduced in the Beam Stiffness TLP.
Phase Diagrams and Solidification
Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.
Introduction To Photoelasticity
This tutorial is based on lab work within the Department of Materials Science and Metallurgy at the University of Cambridge. The tutorial provides an introduction to the topic of photoelasticity and preparation for lab work. Photographs illustrate many features of birefringence in polymers under polarised light.
Recycling of Metals
The next time you drain a canned beverage or take a journey in a car, you might like to think about what will happen to it when it reaches the end of its useful life. This teaching and learning package will look at metals recycling from a materials science viewpoint â€“ not simply outlining the need for recycling, but explaining the complex scientific principles behind some aspects of the recycling process itself.
Solidification of Alloys
This teaching and learning package (TLP) is an introduction to how solute affects the solidification of metallic alloys.
Superelasticity and Shape Memory Alloys
This teaching and learning package (TLP) introduces the phenomena of superelasticity and the shape memory effect.
Thermal Expansion and the Bi-material Strip
This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Young's Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.
X-ray Diffraction Techniques
This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.