Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Search for a TLP

Toggle TLP descriptions
Currently showing 49 TLPs

Having the following tags:

  • Crystallinity
  • Crystallography
  • Failure
  • Kinetics
  • Magnetism
  • Microscopy
  • Natural materials
  • Tensors
  • Thermal properties
  • Thermodynamics
Analysis of Deformation Processes

This TLP builds upon the introduction to yield criteria covered in the Stress analysis and Mohr's circle TLP and introduces a range of methods commonly used to study metal forming processes.

Introduction To Anisotropy

It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.

Atomic Force Microscopy

Provides a brief introduction to atomic force microscopy (AFM), some of the ways it is commonly used and some of the problems faced.

Atomic Scale Structure of Materials

This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.

Avoidance of Crystallization in Biological Systems

This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.

Batteries

This TLP investigates the basic principles, design and applications of batteries. It covers both primary and rechargeable batteries, how they work and how they may be used.

Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

Brittle Fracture

What determines when a material will break, and whether failure will be catastrophic or more gradual. Cracking is controlled by the energy changes that occur - it is not the stress at the crack tip that is important..

Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Crystallographic Texture

This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.

Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

Diffraction and Imaging

A brief summary of diffraction and imaging using an optical system.

Elasticity in Biological Materials

This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.

Electromigration

Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.

Ellingham Diagrams

The Ellingham diagram is a tool most often used in extraction metallurgy to find the conditions necessary for the reduction of the ores of important metals. This Teaching and Learning Package incorporates an interactive Ellingham diagram. This diagram can be used to quickly and simply find a range of thermodynamic data relating to many metallurgical reactions.

Examination of a Manufactured Article

This TLP provides an introduction to the deconstruction and investigation of the materials and processes used in an everyday item or article.

Ferromagnetic Materials

How many ferromagnets do you think you own? Maybe many more than you realise. Ferromagnetic materials lie at the heart not just of the humble compass, but also of many loudspeakers and of computer memory. This teaching and learning package outlines the microscopic basis of magnetism and some of the conquences of ferromagnetic order in real materials.

Fuel Cells

This teaching and learning package provides a short summary of four of the most promising fuel cell technologies. It gives a general overview of the field with focus on materials used (electrolytes and electrodes) and the mechanism of function (electrochemistry and thermodynamics).

The Glass Transition in Polymers

This teaching and learning package is based on a lecture demonstrations used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the glass transition in polymers.

Granular Materials

This teaching and learning package (TLP) is an introduction to the static behaviour and flow behaviour of granular materials.

Indexing Electron Diffraction Patterns

An introduction to the indexing of diffraction patterns.

Kinetics of Aqueous Corrosion

This teaching and learning package (TLP) introduces the mechanism of aqueous corrosion and the associated kinetics.

Lattice Planes and Miller Indices

This teaching and learning package provides an introduction to the method used to describe planes of atoms in a crystalline material. The practical uses of describing planes of atoms are also addressed.

Liquid Crystals

This Teaching and Learning Package provides an introduction to liquid crystals, their physical properties and their modern-day applications.

Introduction to Mechanical Properties of Materials

This teaching and learning package (TLP) introduces mechanical properties of materials, starting from a stress–strain curve and exploring both elastic behaviour (e.g., Hooke's law) and plastic behaviour (e.g., slip, creep).

Mechanical Testing of Metals

This teaching and learning package (TLP) introduces the basic mechanics involved in mechanical testing of metals, first outlining the meaning of deviatoric and hydrostatic stresses and strains, followed by definitions of true and nominal values and then covering the idea of constitutive laws that characterise the development of plastic deformation. The issues involved in carrying out conventional uniaxial (tensile and compressive) tests, and interpreting experimental outcomes, are then described. Finally, hardness testing is explained, followed by the development of a related technique involving indentation testing that allows full stress-strain curves to be obtained. All of the analyses are based on a continuum treatment of plastic deformation, with extensive numerical modelling, using the Finite Element Method (FEM).

Mechanisms of Plasticity

This TLP should provide some insights into the plasticity of crystals. It covers some of the important concepts in single-crystals such as Frank-Read source, Lomer locks, climb and cross-slip, and their roles in forest hardening. In addition, grain boundary hardening in poly-crystals is also explained.

Microstructural Examination

This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.

The Nernst Equation and Pourbaix Diagrams

This teaching and learning package (TLP) investigates the Nernst equation and Pourbaix diagrams, which are both important parts of electrochemistry and corrosion science.

Optical Microscopy

An introduction to the use of optical microscopes. It introduces the different types of microscope used to examine specimens and how to set them up correctly. There is also an introduction to specimen preparation.

Optimisation of Materials Properties in Living Systems

This teaching and learning package discusses the uses of merit indices in conjunction with materials-selection maps focusing on biomaterials. The derivation of merit indices is discussed and biological examples are shown.

Phase Diagrams and Solidification

Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.

Introduction To Photoelasticity

This tutorial is based on lab work within the Department of Materials Science and Metallurgy at the University of Cambridge. The tutorial provides an introduction to the topic of photoelasticity and preparation for lab work. Photographs illustrate many features of birefringence in polymers under polarised light.

Slip in Single Crystals

This teaching and learning package explains how plastic deformation of materials occurs through the mechanism of slip. Slip involves dislocation glide on particular slip planes. The geometry of slip is explained, and electron microscopy techniques are used to show slip occurring in single crystals of cadmium.

Solid Solutions

This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.

The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

Stress Analysis and Mohr's Circle

This teaching and learning package provides an introduction to the theory of metal forming. It discusses how stress and strain can be presented as tensors, and ways of identifying the principal stresses. Suitable yield criteria to treat metals and non-metals are also presented.

The Structure and Mechanical Behaviour of Wood

This teaching and learning package discusses the structure of wood, focusing on the structure of the tree trunk and the differences between hardwoods and softwoods. The stiffness and strength of different types of wood are discussed, and the different behaviour of wood when wet is investigated.

Structure of Bone and Implant Materials

This teaching and learning package (TLP) describes the structure of bone from the macro-scale to the micro-scale and considers its description as a biological composite. The structure of hip replacements is described and common implant materials are discussed in relation to the mechanical properties of bone.

Superconductivity

Electrons in pairs? Levitating trains? Superconductivity - the combination of lossless electrical conduction and the ability of a material to expel a magnetic field - is a property that excites interest in fundamental science whilst offering tantalising prospects for a range of applications. In this teaching and learning package (TLP), we trace the history of superconductivity, outline some fundamental properties of superconductors, and describe current and potential applications of materials with this unusual property.

Tensors in Materials Science

This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.

Ternary Phase Diagrams

This teaching and learning package (TLP) introduces basic concepts of ternary phase diagrams.

Introduction to thermal and electrical conductivity

This teaching and learning package (TLP) provides an introductory guide to both electrical and thermal conduction. It includes a few of the basic mechanisms of conduction, some useful formulae, and some common applications of electrical and thermal conductors and insulators.

Thermal Expansion and the Bi-material Strip

This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Youngs Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.

Toughening of Materials

The purpose of this Teaching and Learning Package is to provide an insight into the methods used to toughen brittle materials.

Transmission Electron Microscopy

Transmission electron microscopy is a very important tool in materials science for investigating the fine-scale structure of materials. This TLP serves as an introduction to the basic concepts and structure of the transmission electron microscope.

Tribology - the friction and wear of materials

Consideration of the behaviour of surfaces in contact with one another leads to the subject of tribology ? the study of the friction, lubrication and wear of materials.

X-ray Diffraction Techniques

This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.