Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

Diffusion

An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.

Dislocation Energetics

This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.

Ferromagnetic Materials

How many ferromagnets do you think you own? Maybe many more than you realise. Ferromagnetic materials lie at the heart not just of the humble compass, but also of many loudspeakers and of computer memory. This teaching and learning package outlines the microscopic basis of magnetism and some of the conquences of ferromagnetic order in real materials.

Polymer Basics

This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.

The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

Superconductivity

Electrons in pairs? Levitating trains? Superconductivity - the combination of lossless electrical conduction and the ability of a material to expel a magnetic field - is a property that excites interest in fundamental science whilst offering tantalising prospects for a range of applications. In this teaching and learning package (TLP), we trace the history of superconductivity, outline some fundamental properties of superconductors, and describe current and potential applications of materials with this unusual property.

Tensors in Materials Science

This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.