Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Avoidance of Crystallization in Biological Systems

This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.

Batteries

This TLP investigates the basic principles, design and applications of batteries. It covers both primary and rechargeable batteries, how they work and how they may be used.

Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

Crystallographic Texture

This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.

Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

Diffusion

An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.

Dislocation Energetics

This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.

Electromigration

Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.

Fuel Cells

This teaching and learning package provides a short summary of four of the most promising fuel cell technologies. It gives a general overview of the field with focus on materials used (electrolytes and electrodes) and the mechanism of function (electrochemistry and thermodynamics).

Kinetics of Aqueous Corrosion

This teaching and learning package (TLP) introduces the mechanism of aqueous corrosion and the associated kinetics.

Lattice Planes and Miller Indices

This teaching and learning package provides an introduction to the method used to describe planes of atoms in a crystalline material. The practical uses of describing planes of atoms are also addressed.

Introduction to Mechanical Properties of Materials

This teaching and learning package (TLP) introduces mechanical properties of materials, starting from a stress–strain curve and exploring both elastic behaviour (e.g., Hooke's law) and plastic behaviour (e.g., slip, creep).

Polymer Basics

This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.

Slip in Single Crystals

This teaching and learning package explains how plastic deformation of materials occurs through the mechanism of slip. Slip involves dislocation glide on particular slip planes. The geometry of slip is explained, and electron microscopy techniques are used to show slip occurring in single crystals of cadmium.

The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

Tensors in Materials Science

This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.

X-ray Diffraction Techniques

This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.