Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

# TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

Despite undergoing a process to update our older TLPs over the last year or more, many of our TLPs still contain Flash animations. These are highlighted in the list below (). Unfortunately with Flash being End-Of-Life they no longer work. Please be reassured that we are continuing the process over the coming month. Any TLPs listed below that do not have a Flash animation tag either have no animations within them or the animations have been created using HTML5 (). We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

##### Currently showing 13 TLPs

Having the following tags:

• Fundamentals
• Thermal properties
• Thin films
##### Introduction To Anisotropy

It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.

##### Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

##### Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

##### Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

##### Diffusion

An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.

##### Dislocation Energetics

This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.

##### Electromigration

Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.

##### Epitaxial Growth

This TLP enables you to explore the way in which perfect thin crystalline layers are deposited epitaxially (i.e. in the same crystal orientation) on semiconductor substrates. This is the way many electronic and opto-electronic devices are now fabricated using techniques such as molecular beam epitaxy (MBE).

##### Physical Vapour Deposition of Thin Films

This TLP aims to look at Physical Vapour Deposition (PVD) as a method to apply thin films. It covers evaporation and sputtering, and then moves on to look at shadowing.

##### Polymer Basics

This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.

##### The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

##### Tensors in Materials Science

This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.

##### Thermal Expansion and the Bi-material Strip

This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Youngs Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.