
TLP Library
Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.
TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.
Search for a TLP
- alloys(8)
- atomic-scale structure(19)
- ceramics(4)
- chemistry(5)
- composites(5)
- corrosion(2)
- crystallinity(5)
- crystallography(7)
- diffraction(6)
- diffusion(6)
- elastic deformation(8)
- electronic properties(8)
- energy(3)
- experiment(10)
- failure(5)
- Finite Element Method(3)
- fluid dynamics(1)
- functional materials(8)
- kinetics(5)
- magnetism(2)
- manufacturing(6)
- mechanical properties(20)
- metals(16)
- microscopy(8)
- natural materials(6)
- optical properties(5)
- phase transformations(7)
- plastic deformation(9)
- polymers(9)
- Raman spectroscopy(1)
- steel(3)
- tensors(4)
- thermal properties(4)
- thermodynamics(7)
- thin films(4)
Toggle TLP descriptions
Currently showing 12 TLPs
Having the following tags:
Atomic Force Microscopy
Provides a brief introduction to atomic force microscopy (AFM), some of the ways it is commonly used and some of the problems faced.
Atomic Scale Structure of Materials
This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.
Crystallinity in Polymers
An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.
Crystallography
Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.
Diffusion
An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.
Dislocation Energetics
This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.
Microstructural Examination
This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.
Phase Diagrams and Solidification
Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.
Polymer Basics
This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.
Solid Solutions
This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.
The Stereographic Projection
This TLP covers the use of the Stereographic projection and Wulff nets.
Tensors in Materials Science
This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.