
TLP Library
Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.
TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.
Search for a TLP
- atomic-scale structure(19)
- ceramics(4)
- chemistry(5)
- composites(5)
- corrosion(2)
- crystallinity(5)
- crystallography(7)
- diffraction(6)
- diffusion(6)
- elastic deformation(8)
- electronic properties(8)
- energy(3)
- experiment(10)
- failure(5)
- Finite Element Method(3)
- fluid dynamics(1)
- functional materials(8)
- kinetics(5)
- magnetism(2)
- manufacturing(6)
- mechanical properties(20)
- metals(16)
- microscopy(8)
- microstructure(6)
- natural materials(6)
- optical properties(5)
- phase transformations(7)
- plastic deformation(9)
- polymers(9)
- Raman spectroscopy(1)
- steel(3)
- tensors(4)
- thermal properties(4)
- thermodynamics(7)
- thin films(4)
Toggle TLP descriptions
Currently showing 14 TLPs
Having the following tags:
Casting
This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.
Creep Deformation of Metals
Creep is a major concern, since it can cause materials to progressively deform, and possibly to fail, under applied stresses below their yield stress. This is particularly likely at elevated temperatures. In this package, the main mechanisms of creep are outlined and some analytical expressions presented that are used to represent its progression. Testing procedures are described, covering both simple uniaxial loading and more complex test geometries. It is shown how creep characteristics can be inferred from the outcome of such tests, requiring in some cases numerical (finite element) modelling of the process. Information is also presented about the design of highly creep-resistant materials.
Crystallographic Texture
This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.
Crystallography
Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.
Diffusion
An introduction to the mechanisms and driving forces of diffusion, and some of the processes in which it is observed.
Dislocation Energetics
This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.
Microstructural Examination
This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.
Phase Diagrams and Solidification
Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.
Polymer Basics
This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.
Solid Solutions
This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.
Solidification of Alloys
This teaching and learning package (TLP) is an introduction to how solute affects the solidification of metallic alloys.
The Stereographic Projection
This TLP covers the use of the Stereographic projection and Wulff nets.
Superelasticity and Shape Memory Alloys
This teaching and learning package (TLP) introduces the phenomena of superelasticity and the shape memory effect.
Tensors in Materials Science
This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.