Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Introduction To Anisotropy

It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.

Atomic Scale Structure of Materials

This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.

Avoidance of Crystallization in Biological Systems

This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Elasticity in Biological Materials

This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.

Granular Materials

This teaching and learning package (TLP) is an introduction to the static behaviour and flow behaviour of granular materials.

Liquid Crystals

This Teaching and Learning Package provides an introduction to liquid crystals, their physical properties and their modern-day applications.

Optimisation of Materials Properties in Living Systems

This teaching and learning package discusses the uses of merit indices in conjunction with materials-selection maps focusing on biomaterials. The derivation of merit indices is discussed and biological examples are shown.

The Structure and Mechanical Behaviour of Wood

This teaching and learning package discusses the structure of wood, focusing on the structure of the tree trunk and the differences between hardwoods and softwoods. The stiffness and strength of different types of wood are discussed, and the different behaviour of wood when wet is investigated.

Structure of Bone and Implant Materials

This teaching and learning package (TLP) describes the structure of bone from the macro-scale to the micro-scale and considers its description as a biological composite. The structure of hip replacements is described and common implant materials are discussed in relation to the mechanical properties of bone.