Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Avoidance of Crystallization in Biological Systems

This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.

Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

Dielectric Materials

This teaching and learning package will introduce you to the properties and uses of dielectric materials.

Elasticity in Biological Materials

This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.

Electromigration

Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.

Ferroelectric Materials

Ferroelectrics have been used in real-world applications for a small number of decades, most notably for non-volatile data storage. For example, they have been used in a Sony Playstation and Japanese railway cards.

Ferromagnetic Materials

How many ferromagnets do you think you own? Maybe many more than you realise. Ferromagnetic materials lie at the heart not just of the humble compass, but also of many loudspeakers and of computer memory. This teaching and learning package outlines the microscopic basis of magnetism and some of the conquences of ferromagnetic order in real materials.

Granular Materials

This teaching and learning package (TLP) is an introduction to the static behaviour and flow behaviour of granular materials.

Optimisation of Materials Properties in Living Systems

This teaching and learning package discusses the uses of merit indices in conjunction with materials-selection maps focusing on biomaterials. The derivation of merit indices is discussed and biological examples are shown.

Piezoelectric Materials

This teaching and learning package (TLP) provides an introduction to piezoelectric materials.

Pyroelectric Materials

Pyroelectric materials are found in almost every home, in the form of intrusion detectors and other devices, and this TLP will consider how they work, and what the most common ones are made of.

Introduction To Semiconductors

This teaching and learning package provides a very basic introduction to semiconductors. These materials are essential to the operation of solid state electronic devices.

The Structure and Mechanical Behaviour of Wood

This teaching and learning package discusses the structure of wood, focusing on the structure of the tree trunk and the differences between hardwoods and softwoods. The stiffness and strength of different types of wood are discussed, and the different behaviour of wood when wet is investigated.

Structure of Bone and Implant Materials

This teaching and learning package (TLP) describes the structure of bone from the macro-scale to the micro-scale and considers its description as a biological composite. The structure of hip replacements is described and common implant materials are discussed in relation to the mechanical properties of bone.

Superconductivity

Electrons in pairs? Levitating trains? Superconductivity - the combination of lossless electrical conduction and the ability of a material to expel a magnetic field - is a property that excites interest in fundamental science whilst offering tantalising prospects for a range of applications. In this teaching and learning package (TLP), we trace the history of superconductivity, outline some fundamental properties of superconductors, and describe current and potential applications of materials with this unusual property.

Introduction to thermal and electrical conductivity

This teaching and learning package (TLP) provides an introductory guide to both electrical and thermal conduction. It includes a few of the basic mechanisms of conduction, some useful formulae, and some common applications of electrical and thermal conductors and insulators.