Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Additive Manufacturing

This TLP provides an introduction to additive manufacturing methods, their advantages and limitations, and how the properties of printed objects are affected by varying printing parameters.

Analysis of Deformation Processes

This TLP builds upon the introduction to yield criteria covered in the Stress analysis and Mohr's circle TLP and introduces a range of methods commonly used to study metal forming processes.

Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Elasticity in Biological Materials

This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.

Examination of a Manufactured Article

This TLP provides an introduction to the deconstruction and investigation of the materials and processes used in an everyday item or article.

The Glass Transition in Polymers

This teaching and learning package is based on a lecture demonstrations used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the glass transition in polymers.

Liquid Crystals

This Teaching and Learning Package provides an introduction to liquid crystals, their physical properties and their modern-day applications.

Introduction To Photoelasticity

This tutorial is based on lab work within the Department of Materials Science and Metallurgy at the University of Cambridge. The tutorial provides an introduction to the topic of photoelasticity and preparation for lab work. Photographs illustrate many features of birefringence in polymers under polarised light.

Polymer Basics

This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.

The Stiffness of Rubber

This teaching and learning package is based on two experiments which demonstrate the behaviour of rubber under tension. The first displays the unusual behaviour of a rubber strip when heated under tension; the second considers the behaviour of a rubber membrane under tension. In both cases the behaviour is considered theoretically in terms of the molecular structure of rubber and the thermodynamic entropy changes involved.

Stress Analysis and Mohr's Circle

This teaching and learning package provides an introduction to the theory of metal forming. It discusses how stress and strain can be presented as tensors, and ways of identifying the principal stresses. Suitable yield criteria to treat metals and non-metals are also presented.

Tensors in Materials Science

This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.