Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Additive Manufacturing

This TLP provides an introduction to additive manufacturing methods, their advantages and limitations, and how the properties of printed objects are affected by varying printing parameters.

Introduction To Anisotropy

It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.

Atomic Force Microscopy

Provides a brief introduction to atomic force microscopy (AFM), some of the ways it is commonly used and some of the problems faced.

Atomic Scale Structure of Materials

This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.

Batteries

This TLP investigates the basic principles, design and applications of batteries. It covers both primary and rechargeable batteries, how they work and how they may be used.

Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

Creep Deformation of Metals

Creep is a major concern, since it can cause materials to progressively deform, and possibly to fail, under applied stresses below their yield stress. This is particularly likely at elevated temperatures. In this package, the main mechanisms of creep are outlined and some analytical expressions presented that are used to represent its progression. Testing procedures are described, covering both simple uniaxial loading and more complex test geometries. It is shown how creep characteristics can be inferred from the outcome of such tests, requiring in some cases numerical (finite element) modelling of the process. Information is also presented about the design of highly creep-resistant materials.

Crystallographic Texture

This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.

Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

Diffraction and Imaging

A brief summary of diffraction and imaging using an optical system.

Dislocation Energetics

This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.

Introduction To Dislocations

Dislocations are crucially important in determining the mechanical behaviour of materials. This teaching and learning package provides an introduction to dislocations and their motion through a crystal. A 'bubble raft' model is used to demonstrate some of the features of dislocations and other lattice defects. Some methods for observing real dislocations in materials are examined.

Electromigration

Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.

Ellingham Diagrams

The Ellingham diagram is a tool most often used in extraction metallurgy to find the conditions necessary for the reduction of the ores of important metals. This Teaching and Learning Package incorporates an interactive Ellingham diagram. This diagram can be used to quickly and simply find a range of thermodynamic data relating to many metallurgical reactions.

Epitaxial Growth

This TLP enables you to explore the way in which perfect thin crystalline layers are deposited epitaxially (i.e. in the same crystal orientation) on semiconductor substrates. This is the way many electronic and opto-electronic devices are now fabricated using techniques such as molecular beam epitaxy (MBE).

Fuel Cells

This teaching and learning package provides a short summary of four of the most promising fuel cell technologies. It gives a general overview of the field with focus on materials used (electrolytes and electrodes) and the mechanism of function (electrochemistry and thermodynamics).

The Glass Transition in Polymers

This teaching and learning package is based on a lecture demonstrations used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the glass transition in polymers.

The Jominy End Quench Test

Discusses the aims, method and use of results of a test for the hardenability of steel.

Lattice Planes and Miller Indices

This teaching and learning package provides an introduction to the method used to describe planes of atoms in a crystalline material. The practical uses of describing planes of atoms are also addressed.

Introduction to Mechanical Properties of Materials

This teaching and learning package (TLP) introduces mechanical properties of materials, starting from a stress–strain curve and exploring both elastic behaviour (e.g., Hooke's law) and plastic behaviour (e.g., slip, creep).

Mechanical Testing of Metals

This teaching and learning package (TLP) introduces the basic mechanics involved in mechanical testing of metals, first outlining the meaning of deviatoric and hydrostatic stresses and strains, followed by definitions of true and nominal values and then covering the idea of constitutive laws that characterise the development of plastic deformation. The issues involved in carrying out conventional uniaxial (tensile and compressive) tests, and interpreting experimental outcomes, are then described. Finally, hardness testing is explained, followed by the development of a related technique involving indentation testing that allows full stress-strain curves to be obtained. All of the analyses are based on a continuum treatment of plastic deformation, with extensive numerical modelling, using the Finite Element Method (FEM).

Mechanics of Fibre-reinforced Composites

This teaching and learning package (TLP) gives an introduction to the nature of fibre-reinforced composite materials and their basic mechanical characteristics.

The Nernst Equation and Pourbaix Diagrams

This teaching and learning package (TLP) investigates the Nernst equation and Pourbaix diagrams, which are both important parts of electrochemistry and corrosion science.

Phase Diagrams and Solidification

Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.

Introduction To Photoelasticity

This tutorial is based on lab work within the Department of Materials Science and Metallurgy at the University of Cambridge. The tutorial provides an introduction to the topic of photoelasticity and preparation for lab work. Photographs illustrate many features of birefringence in polymers under polarised light.

Physical Vapour Deposition of Thin Films

This TLP aims to look at Physical Vapour Deposition (PVD) as a method to apply thin films. It covers evaporation and sputtering, and then moves on to look at shadowing.

Polymer Basics

This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.

Raman Spectroscopy

An introduction to the analysis of materials and chemicals by the Raman scattering of light.

Reciprocal Space

This TLP shows the construction of reciprocal lattices from real ones, use of the Ewald sphere for diffraction experiments and some other applications of reciprocal space.

Introduction To Semiconductors

This teaching and learning package provides a very basic introduction to semiconductors. These materials are essential to the operation of solid state electronic devices.

Slip in Single Crystals

This teaching and learning package explains how plastic deformation of materials occurs through the mechanism of slip. Slip involves dislocation glide on particular slip planes. The geometry of slip is explained, and electron microscopy techniques are used to show slip occurring in single crystals of cadmium.

Solid Solutions

This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.

The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

Structure of Bone and Implant Materials

This teaching and learning package (TLP) describes the structure of bone from the macro-scale to the micro-scale and considers its description as a biological composite. The structure of hip replacements is described and common implant materials are discussed in relation to the mechanical properties of bone.

Superelasticity and Shape Memory Alloys

This teaching and learning package (TLP) introduces the phenomena of superelasticity and the shape memory effect.

Ternary Phase Diagrams

This teaching and learning package (TLP) introduces basic concepts of ternary phase diagrams.

Thermal Expansion and the Bi-material Strip

This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Youngs Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.

Toughening of Materials

The purpose of this Teaching and Learning Package is to provide an insight into the methods used to toughen brittle materials.

Transmission Electron Microscopy

Transmission electron microscopy is a very important tool in materials science for investigating the fine-scale structure of materials. This TLP serves as an introduction to the basic concepts and structure of the transmission electron microscope.

X-ray Diffraction Techniques

This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.