Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Analysis of Deformation Processes

This TLP builds upon the introduction to yield criteria covered in the Stress analysis and Mohr's circle TLP and introduces a range of methods commonly used to study metal forming processes.

Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

Creep Deformation of Metals

Creep is a major concern, since it can cause materials to progressively deform, and possibly to fail, under applied stresses below their yield stress. This is particularly likely at elevated temperatures. In this package, the main mechanisms of creep are outlined and some analytical expressions presented that are used to represent its progression. Testing procedures are described, covering both simple uniaxial loading and more complex test geometries. It is shown how creep characteristics can be inferred from the outcome of such tests, requiring in some cases numerical (finite element) modelling of the process. Information is also presented about the design of highly creep-resistant materials.

Finite Element Method

This teaching and learning package (TLP) is an introduction to the finite element method. It covers basic concepts including meshes, nodes, degrees of freedom and boundary conditions. The direct stiffness method is also introduced, as is the global stiffness matrix and interpolation functions. The basic steps in constructing a finite element model are also covered.

Mechanical Testing of Metals

This teaching and learning package (TLP) introduces the basic mechanics involved in mechanical testing of metals, first outlining the meaning of deviatoric and hydrostatic stresses and strains, followed by definitions of true and nominal values and then covering the idea of constitutive laws that characterise the development of plastic deformation. The issues involved in carrying out conventional uniaxial (tensile and compressive) tests, and interpreting experimental outcomes, are then described. Finally, hardness testing is explained, followed by the development of a related technique involving indentation testing that allows full stress-strain curves to be obtained. All of the analyses are based on a continuum treatment of plastic deformation, with extensive numerical modelling, using the Finite Element Method (FEM).

Stress Analysis and Mohr's Circle

This teaching and learning package provides an introduction to the theory of metal forming. It discusses how stress and strain can be presented as tensors, and ways of identifying the principal stresses. Suitable yield criteria to treat metals and non-metals are also presented.

Tensors in Materials Science

This TLP offers an introduction to the mathematics of tensors rather than the intricacies of their applications. Its aims are to familiarise the learner with tensor notation, how they can be constructed and how they can be manipulated to give numerical answers to problems.