Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Analysis of Deformation Processes

This TLP builds upon the introduction to yield criteria covered in the Stress analysis and Mohr's circle TLP and introduces a range of methods commonly used to study metal forming processes.

Atomic Force Microscopy

Provides a brief introduction to atomic force microscopy (AFM), some of the ways it is commonly used and some of the problems faced.

Atomic Scale Structure of Materials

This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Introduction To Deformation Processes

This teaching and learning package covers the fundamentals of metal forming processes.

Dislocation Energetics

This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.

Introduction To Dislocations

Dislocations are crucially important in determining the mechanical behaviour of materials. This teaching and learning package provides an introduction to dislocations and their motion through a crystal. A 'bubble raft' model is used to demonstrate some of the features of dislocations and other lattice defects. Some methods for observing real dislocations in materials are examined.

Mechanical Testing of Metals

This teaching and learning package (TLP) introduces the basic mechanics involved in mechanical testing of metals, first outlining the meaning of deviatoric and hydrostatic stresses and strains, followed by definitions of true and nominal values and then covering the idea of constitutive laws that characterise the development of plastic deformation. The issues involved in carrying out conventional uniaxial (tensile and compressive) tests, and interpreting experimental outcomes, are then described. Finally, hardness testing is explained, followed by the development of a related technique involving indentation testing that allows full stress-strain curves to be obtained. All of the analyses are based on a continuum treatment of plastic deformation, with extensive numerical modelling, using the Finite Element Method (FEM).

Mechanisms of Plasticity

This TLP should provide some insights into the plasticity of crystals. It covers some of the important concepts in single-crystals such as Frank-Read source, Lomer locks, climb and cross-slip, and their roles in forest hardening. In addition, grain boundary hardening in poly-crystals is also explained.

Microstructural Examination

This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.

Phase Diagrams and Solidification

Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.

Slip in Single Crystals

This teaching and learning package explains how plastic deformation of materials occurs through the mechanism of slip. Slip involves dislocation glide on particular slip planes. The geometry of slip is explained, and electron microscopy techniques are used to show slip occurring in single crystals of cadmium.

Solid Solutions

This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.

Stress Analysis and Mohr's Circle

This teaching and learning package provides an introduction to the theory of metal forming. It discusses how stress and strain can be presented as tensors, and ways of identifying the principal stresses. Suitable yield criteria to treat metals and non-metals are also presented.

Tribology - the friction and wear of materials

Consideration of the behaviour of surfaces in contact with one another leads to the subject of tribology ? the study of the friction, lubrication and wear of materials.