Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Additive Manufacturing

This TLP provides an introduction to additive manufacturing methods, their advantages and limitations, and how the properties of printed objects are affected by varying printing parameters.

Bending and Torsion of Beams

This teaching and learning package provides an introduction to the mechanics of beam bending and torsion, looking particularly at the bending of cantilever and free-standing beams and the torsion of cylindrical bars.

Casting

This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.

Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

Deformation of Honeycombs and Foams

Highly porous materials, such as honeycombs, foams and fibrous structures, are an important class of material in both synthetic and biological systems. They are used in many different ways, but their mechanical behaviour is often of great importance as they are pressed, bent, sat on or chewed. An important class of these materials can be considered as made up of cells, so-called cellular structures. Here we describe how these materials deform, elastically and irreversibly.

Introduction To Deformation Processes

This teaching and learning package covers the fundamentals of metal forming processes.

Elasticity in Biological Materials

This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.

Examination of a Manufactured Article

This TLP provides an introduction to the deconstruction and investigation of the materials and processes used in an everyday item or article.

Mechanics of Fibre-reinforced Composites

This teaching and learning package (TLP) gives an introduction to the nature of fibre-reinforced composite materials and their basic mechanical characteristics.

Introduction To Photoelasticity

This tutorial is based on lab work within the Department of Materials Science and Metallurgy at the University of Cambridge. The tutorial provides an introduction to the topic of photoelasticity and preparation for lab work. Photographs illustrate many features of birefringence in polymers under polarised light.

Powder processing

This teaching and learning package (TLP) provides an introduction to the dynamics of powder particles in fluid streams and relates this background to issues such as the time for which such particles remain suspended in air or water and the likelihood of them striking obstacles in their path. It also presents a description of the main routes by which (ceramic or metallic) powders are converted to solid objects.

Recycling of Metals

The next time you drain a canned beverage or take a journey in a car, you might like to think about what will happen to it when it reaches the end of its useful life. This teaching and learning package will look at metals recycling from a materials science viewpoint - not simply outlining the need for recycling, but explaining the complex scientific principles behind some aspects of the recycling process itself.

Superelasticity and Shape Memory Alloys

This teaching and learning package (TLP) introduces the phenomena of superelasticity and the shape memory effect.

Thermal Expansion and the Bi-material Strip

This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Youngs Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.