Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

Despite undergoing a process to update our older TLPs over the last year or more, many of our TLPs still contain Flash animations. These are highlighted in the list below (). Unfortunately with Flash being End-Of-Life they no longer work. Please be reassured that we are continuing the process over the coming month. Any TLPs listed below that do not have a Flash animation tag either have no animations within them or the animations have been created using HTML5 (). We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Brittle Fracture

What determines when a material will break, and whether failure will be catastrophic or more gradual. Cracking is controlled by the energy changes that occur - it is not the stress at the crack tip that is important..

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Mechanical Testing of Metals

This teaching and learning package (TLP) introduces the basic mechanics involved in mechanical testing of metals, first outlining the meaning of deviatoric and hydrostatic stresses and strains, followed by definitions of true and nominal values and then covering the idea of constitutive laws that characterise the development of plastic deformation. The issues involved in carrying out conventional uniaxial (tensile and compressive) tests, and interpreting experimental outcomes, are then described. Finally, hardness testing is explained, followed by the development of a related technique involving indentation testing that allows full stress-strain curves to be obtained. All of the analyses are based on a continuum treatment of plastic deformation, with extensive numerical modelling, using the Finite Element Method (FEM).

Mechanisms of Plasticity

This TLP should provide some insights into the plasticity of crystals. It covers some of the important concepts in single-crystals such as Frank-Read source, Lomer locks, climb and cross-slip, and their roles in forest hardening. In addition, grain boundary hardening in poly-crystals is also explained.

Tribology - the friction and wear of materials

Consideration of the behaviour of surfaces in contact with one another leads to the subject of tribology ? the study of the friction, lubrication and wear of materials.