Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Brittle Fracture

What determines when a material will break, and whether failure will be catastrophic or more gradual. Cracking is controlled by the energy changes that occur - it is not the stress at the crack tip that is important..

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Examination of a Manufactured Article

This TLP provides an introduction to the deconstruction and investigation of the materials and processes used in an everyday item or article.

Ferroelectric Materials

Ferroelectrics have been used in real-world applications for a small number of decades, most notably for non-volatile data storage. For example, they have been used in a Sony Playstation and Japanese railway cards.

Mechanical Testing of Metals

This teaching and learning package (TLP) introduces the basic mechanics involved in mechanical testing of metals, first outlining the meaning of deviatoric and hydrostatic stresses and strains, followed by definitions of true and nominal values and then covering the idea of constitutive laws that characterise the development of plastic deformation. The issues involved in carrying out conventional uniaxial (tensile and compressive) tests, and interpreting experimental outcomes, are then described. Finally, hardness testing is explained, followed by the development of a related technique involving indentation testing that allows full stress-strain curves to be obtained. All of the analyses are based on a continuum treatment of plastic deformation, with extensive numerical modelling, using the Finite Element Method (FEM).

Mechanisms of Plasticity

This TLP should provide some insights into the plasticity of crystals. It covers some of the important concepts in single-crystals such as Frank-Read source, Lomer locks, climb and cross-slip, and their roles in forest hardening. In addition, grain boundary hardening in poly-crystals is also explained.

Powder processing

This teaching and learning package (TLP) provides an introduction to the dynamics of powder particles in fluid streams and relates this background to issues such as the time for which such particles remain suspended in air or water and the likelihood of them striking obstacles in their path. It also presents a description of the main routes by which (ceramic or metallic) powders are converted to solid objects.

Tribology - the friction and wear of materials

Consideration of the behaviour of surfaces in contact with one another leads to the subject of tribology ? the study of the friction, lubrication and wear of materials.