Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Additive Manufacturing

This TLP provides an introduction to additive manufacturing methods, their advantages and limitations, and how the properties of printed objects are affected by varying printing parameters.

Avoidance of Crystallization in Biological Systems

This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.

Casting

This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.

Creep Deformation of Metals

Creep is a major concern, since it can cause materials to progressively deform, and possibly to fail, under applied stresses below their yield stress. This is particularly likely at elevated temperatures. In this package, the main mechanisms of creep are outlined and some analytical expressions presented that are used to represent its progression. Testing procedures are described, covering both simple uniaxial loading and more complex test geometries. It is shown how creep characteristics can be inferred from the outcome of such tests, requiring in some cases numerical (finite element) modelling of the process. Information is also presented about the design of highly creep-resistant materials.

Crystallographic Texture

This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.

Introduction To Deformation Processes

This teaching and learning package covers the fundamentals of metal forming processes.

Elasticity in Biological Materials

This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.

Examination of a Manufactured Article

This TLP provides an introduction to the deconstruction and investigation of the materials and processes used in an everyday item or article.

Granular Materials

This teaching and learning package (TLP) is an introduction to the static behaviour and flow behaviour of granular materials.

Microstructural Examination

This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.

Optimisation of Materials Properties in Living Systems

This teaching and learning package discusses the uses of merit indices in conjunction with materials-selection maps focusing on biomaterials. The derivation of merit indices is discussed and biological examples are shown.

Phase Diagrams and Solidification

Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.

Powder processing

This teaching and learning package (TLP) provides an introduction to the dynamics of powder particles in fluid streams and relates this background to issues such as the time for which such particles remain suspended in air or water and the likelihood of them striking obstacles in their path. It also presents a description of the main routes by which (ceramic or metallic) powders are converted to solid objects.

Recycling of Metals

The next time you drain a canned beverage or take a journey in a car, you might like to think about what will happen to it when it reaches the end of its useful life. This teaching and learning package will look at metals recycling from a materials science viewpoint - not simply outlining the need for recycling, but explaining the complex scientific principles behind some aspects of the recycling process itself.

Solid Solutions

This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.

Solidification of Alloys

This teaching and learning package (TLP) is an introduction to how solute affects the solidification of metallic alloys.

The Structure and Mechanical Behaviour of Wood

This teaching and learning package discusses the structure of wood, focusing on the structure of the tree trunk and the differences between hardwoods and softwoods. The stiffness and strength of different types of wood are discussed, and the different behaviour of wood when wet is investigated.

Structure of Bone and Implant Materials

This teaching and learning package (TLP) describes the structure of bone from the macro-scale to the micro-scale and considers its description as a biological composite. The structure of hip replacements is described and common implant materials are discussed in relation to the mechanical properties of bone.

Superelasticity and Shape Memory Alloys

This teaching and learning package (TLP) introduces the phenomena of superelasticity and the shape memory effect.

Ternary Phase Diagrams

This teaching and learning package (TLP) introduces basic concepts of ternary phase diagrams.