
TLP Library
Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.
TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.
Search for a TLP
- alloys(8)
- atomic-scale structure(19)
- ceramics(4)
- chemistry(5)
- composites(5)
- corrosion(2)
- crystallinity(5)
- crystallography(7)
- diffusion(6)
- elastic deformation(8)
- electronic properties(8)
- energy(3)
- experiment(10)
- failure(5)
- Finite Element Method(3)
- fluid dynamics(1)
- functional materials(8)
- fundamentals(6)
- kinetics(5)
- magnetism(2)
- manufacturing(6)
- mechanical properties(20)
- metals(16)
- microscopy(8)
- microstructure(6)
- optical properties(5)
- phase transformations(7)
- plastic deformation(9)
- polymers(9)
- Raman spectroscopy(1)
- steel(3)
- tensors(4)
- thermal properties(4)
- thermodynamics(7)
- thin films(4)
Toggle TLP descriptions
Currently showing 12 TLPs
Having the following tags:
Avoidance of Crystallization in Biological Systems
This teaching and learning package discusses the two main environmental threats leading to crystallization in plants and animals, and the ways in which organisms have adapted to avoid this crystallization. As part of this discussion, there is coverage of some of the theory of nucleation and crystallization.
Crystallographic Texture
This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.
Diffraction and Imaging
A brief summary of diffraction and imaging using an optical system.
Elasticity in Biological Materials
This teaching and learning package (TLP) discusses the elasticity of biological materials. Whilst some show Hookean elasticity, the vast majority do not. Non-linear elasticity is considered, in particular J-shaped and S-shaped curves. Viscoelasticity is also discussed, using hair and spiders' silk as examples.
Granular Materials
This teaching and learning package (TLP) is an introduction to the static behaviour and flow behaviour of granular materials.
Indexing Electron Diffraction Patterns
An introduction to the indexing of diffraction patterns.
Optimisation of Materials Properties in Living Systems
This teaching and learning package discusses the uses of merit indices in conjunction with materials-selection maps focusing on biomaterials. The derivation of merit indices is discussed and biological examples are shown.
Reciprocal Space
This TLP shows the construction of reciprocal lattices from real ones, use of the Ewald sphere for diffraction experiments and some other applications of reciprocal space.
The Stereographic Projection
This TLP covers the use of the Stereographic projection and Wulff nets.
The Structure and Mechanical Behaviour of Wood
This teaching and learning package discusses the structure of wood, focusing on the structure of the tree trunk and the differences between hardwoods and softwoods. The stiffness and strength of different types of wood are discussed, and the different behaviour of wood when wet is investigated.
Structure of Bone and Implant Materials
This teaching and learning package (TLP) describes the structure of bone from the macro-scale to the micro-scale and considers its description as a biological composite. The structure of hip replacements is described and common implant materials are discussed in relation to the mechanical properties of bone.
X-ray Diffraction Techniques
This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.