Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Introduction To Anisotropy

It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.

Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

Casting

This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.

Coating Mechanics

This TLP should provide some insights into the mechanics of bi-layer (coating on substrate) systems. It covers the concept of a misfit strain and the way in which equilibrium is established after its introduction, including the creation of curvature. The differences between "thin" and "thick" coating cases are explained.

Crystallographic Texture

This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.

Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

Electromigration

Electromigration is an ever-increasing problem as integrated circuits are pushed towards further miniaturization. The theory of the phenomenon is explained, including electromigration-induced failure and how it has been and can be minimized.

Epitaxial Growth

This TLP enables you to explore the way in which perfect thin crystalline layers are deposited epitaxially (i.e. in the same crystal orientation) on semiconductor substrates. This is the way many electronic and opto-electronic devices are now fabricated using techniques such as molecular beam epitaxy (MBE).

The Jominy End Quench Test

Discusses the aims, method and use of results of a test for the hardenability of steel.

Lattice Planes and Miller Indices

This teaching and learning package provides an introduction to the method used to describe planes of atoms in a crystalline material. The practical uses of describing planes of atoms are also addressed.

Microstructural Examination

This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.

Physical Vapour Deposition of Thin Films

This TLP aims to look at Physical Vapour Deposition (PVD) as a method to apply thin films. It covers evaporation and sputtering, and then moves on to look at shadowing.

Slip in Single Crystals

This teaching and learning package explains how plastic deformation of materials occurs through the mechanism of slip. Slip involves dislocation glide on particular slip planes. The geometry of slip is explained, and electron microscopy techniques are used to show slip occurring in single crystals of cadmium.

The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

Thermal Expansion and the Bi-material Strip

This teaching and learning package (TLP) is based on lab work in the Department of Materials Science and Metallurgy at the University of Cambridge. The TLP provides an introduction to the topic of thermal expansion, and its application, together with the different stiffness of materials, in the bi-material strip. The TLP leads you through experiments to measure Youngs Modulus from the deflection of a cantilever beam, and to estimate the boiling temperature of nitrogen and the expansivity of a polycarbonate material from the curvature of a bi-material strip immersed in liquid nitrogen.

X-ray Diffraction Techniques

This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.