Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS TLP Library

TLP Library

Teaching and learning packages (TLPs) are self-contained, interactive resources, each focusing on one area of Materials Science.

TLPs containing HTML5 animations/simulations are labelled with the tag . We have found that often the HTML5 animations render better in Microsoft Edge, so if your favourite browser does not work very well with them, please try an alternative.

Introduction To Anisotropy

It is common in basic analysis to treat bulk materials as isotropic - their properties are independent of the direction in which they are measured. However the atomic scale structure can result in properties that vary with direction. This teaching and learning package (TLP) looks into typical examples of such anisotropy and gives a brief mathematical look into modelling the behaviour.

Atomic Force Microscopy

Provides a brief introduction to atomic force microscopy (AFM), some of the ways it is commonly used and some of the problems faced.

Atomic Scale Structure of Materials

This teaching and learning package provides an introduction to crystalline, polycrystalline and amorphous solids, and how the atomic-level structure has radical consequences for some of the properties of the material. It introduces the use of polarised light to examine the optical properties of materials, and shows how a variety of simple models can be used to visualise important features of the microstructure of materials.

Brillouin Zones

This teaching and learning package provides an introduction to Brillouin zones in two and three dimensions and is aimed at developing familiarity with Brillouin Zones. It will not cover any specific applications. Brillouin Zones are particularly useful in understanding the electronic and thermal properties of crystalline solids.

Casting

This TLP introduces a number of important processes through which metallic items can be fabricated from molten metal. As well as detailing the practical aspects of these manufacturing processes, attention is given to the important parameters which determine the microstructure of the finished items.

Crystallinity in Polymers

An understanding of polymer crystallinity is important because the mechanical properties of crystalline polymers are different from those of amorphous polymers. Polymer crystals are much stiffer and stronger than amorphous regions of polymer.

Crystallographic Texture

This teaching and learning package (TLP) introduces the concept of texture in crystalline materials such as common metals and metallic alloys.

Crystallography

Crystalline materials are characterised by a regular atomic structure that repeats itself in all three dimensions. In other words the structure displays translational symmetry.

Dislocation Energetics

This teaching and learning package (TLP) uses an atomistic model of the misfit energy to predict dislocation width and Peierls stress.

Introduction To Dislocations

Dislocations are crucially important in determining the mechanical behaviour of materials. This teaching and learning package provides an introduction to dislocations and their motion through a crystal. A 'bubble raft' model is used to demonstrate some of the features of dislocations and other lattice defects. Some methods for observing real dislocations in materials are examined.

Epitaxial Growth

This TLP enables you to explore the way in which perfect thin crystalline layers are deposited epitaxially (i.e. in the same crystal orientation) on semiconductor substrates. This is the way many electronic and opto-electronic devices are now fabricated using techniques such as molecular beam epitaxy (MBE).

The Jominy End Quench Test

Discusses the aims, method and use of results of a test for the hardenability of steel.

Lattice Planes and Miller Indices

This teaching and learning package provides an introduction to the method used to describe planes of atoms in a crystalline material. The practical uses of describing planes of atoms are also addressed.

Microstructural Examination

This teaching and learning package (TLP) looks at how what we see in micrographs relates to equilibrium phase diagrams and cooling routes for alloy systems.

Phase Diagrams and Solidification

Phase diagrams are a useful tool in metallurgy and other branches of materials science. They show the mixture of phases present in thermodynamic equilibrium. This teaching and learning package looks at the theory behind phase diagrams, and ways of constructing them, before running through an experimental procedure, and presenting the results which can be obtained.

Polymer Basics

This teaching and learning package is an introduction to the basic concepts of polymer science. It includes molecular structure, synthesis and tests for identification.

Raman Spectroscopy

An introduction to the analysis of materials and chemicals by the Raman scattering of light.

Reciprocal Space

This TLP shows the construction of reciprocal lattices from real ones, use of the Ewald sphere for diffraction experiments and some other applications of reciprocal space.

Introduction To Semiconductors

This teaching and learning package provides a very basic introduction to semiconductors. These materials are essential to the operation of solid state electronic devices.

Slip in Single Crystals

This teaching and learning package explains how plastic deformation of materials occurs through the mechanism of slip. Slip involves dislocation glide on particular slip planes. The geometry of slip is explained, and electron microscopy techniques are used to show slip occurring in single crystals of cadmium.

Solid Solutions

This teaching and learning package is based on a practical used within the Department of Materials Science and Metallurgy at the University of Cambridge. The package is aimed at first year undergraduate Materials Science students and focuses on the different types of solid solution and the thermodynamic principles involved in understanding them.

The Stereographic Projection

This TLP covers the use of the Stereographic projection and Wulff nets.

Ternary Phase Diagrams

This teaching and learning package (TLP) introduces basic concepts of ternary phase diagrams.

Toughening of Materials

The purpose of this Teaching and Learning Package is to provide an insight into the methods used to toughen brittle materials.

Transmission Electron Microscopy

Transmission electron microscopy is a very important tool in materials science for investigating the fine-scale structure of materials. This TLP serves as an introduction to the basic concepts and structure of the transmission electron microscope.

X-ray Diffraction Techniques

This teaching & learning package provides an introduction to X-ray diffraction. It describes the main crystallographic information that can be obtained and experimental methods most commonly used.