Re-use of this resource is governed by a Creative Commons
Attribution-

Noncommercial-Share Alike 2.0 Licence UK: England & Wales

https://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Noncommercial-Share Alike 2.0 Licence UK: England & Wales

https://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Basics of the Wulff net

Typically, a Wulff net will be aligned down [001]. For crystal systems with orthogonal lattice vectors, such as cubic crystals, this means that the 001 pole is at the centre of the stereogram, with the 100 and 010 poles at 90° to 001 and to each other. It is conventional, but not a requirement, that the 010 pole is placed on the right-hand side of the stereogram as shown.

Primitive circle - [001] zone

100, *hk*0.

We can therefore plot any pole which is in the [001] zone, by measuring along the great circle until we reach its angular position relative to a reference, i.e. (110) is at 45° to (100), and so we measure 45° around the primitive circle to plot the pole of the plane (110).

It is then straightforward to plot other poles of the form
*hk*0.

It is possible to plot poles which are of the more general
form *hkl* by utilising the zonal relationships between planes.
For example, (111) shares a zone with (110) and (001).

A zone on a Wulff net is represented by a great circle. All positions on this great circle represent the poles of planes lying within that zone. Therefore, to plot poles of planes within a zone, we need to rotate the Wulff net until a great circle lines up between the required poles.

We can then measure the required angular distance along that great circle to plot the next pole, i.e. (111) is 54.7° from (001), or 35.3° from (110).

This use of zones can be extended to allow you to draw every
other possible pole. While it is possible to place a pole by using the
(*hk*0) method, it is also possible to plot other poles by making
use of other great circles. This can be demonstrated by plotting all
planes of the form {111}

To plot poles which share the same zone, we need to align the poles on a great circle. 111 and 1

1 both lie in the same zone as each other, and the same zone as 010 and 0 0. So we can align the Wulff net as shown here, and then plot the next pole by measuring 70.5° along the great circles.The remaining two poles can be plotted in the same manner.

This is a rather simple construction to show how to make use of the Wulff net.

The [001] zone contains all planes of the form (*hk*0).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

*hk*0).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

The [001] zone contains all planes of the form (*hk0*).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

*hk0*).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

*hk0*).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

*hk0*).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

*hk0*).
These planes contain the direction [001] (shown by the red arrow). For
an example, click on the planes below:

The planes (110), (001) and (111) are all in the zone [1

0], and so all contain that direction. (Direction shown by red arrow)The planes (110), (001) and (111) are all in the zone [1

0], and so all contain that direction. (Direction shown by red arrow)The planes (110), (001) and (111) are all in the zone [1

0], and so all contain that direction. (Direction shown by red arrow)The planes (110), (001) and (111) are all in the zone [1

0], and so all contain that direction. (Direction shown by red arrow)The planes (110), (001) and (111) are all in the zone [1

0], and so all contain that direction. (Direction shown by red arrow)