Dissemination of IT for the Promotion of Materials Science (DoITPoMS)

DoITPoMS Teaching & Learning Packages Fuel Cells The chemical thermodynamics of SOFCs
PreviousNext

The chemical thermodynamics of SOFCs

The reactant properties and fuel cell condition determines the electrical potential difference between the anode and the cathode electrode. The following analysis assumes quasi-static equilibrium and a steady flow of gas and ions.

At the cathode-electrolyte interface, the following half reaction occurs:

(1)      ½O2 + 2e ↔ O2–

In equilibrium the sum of the chemical potentials is zero:

(2)     \({\textstyle{1 \over 2}}{\mu _{{O_2}}} + 2({\mu _{{e^ - }}} - F \cdot {\Phi _C}) = ({\mu _{{O^{2 - }}}} - 2F \cdot {\Phi _E})\)

Rearranging equation (2) gives:

(3)     \({\Phi _C} - {\Phi _E} = \)\({\textstyle{1 \over {2F}}}\)\(({\textstyle{1 \over 2}}{\mu _{{O_2}}} + 2{\mu _{{e^ - }}} - {\mu _{{O^{2 - }}}})\)

At the anode-electrolyte interface, the following half reaction occurs:

(4)     H2 + O2– ↔ H2O + 2e

In equilibrium the sum of the chemical potentials is zero:

(5)     \({\mu _{{H_2}}} + ({\mu _{{O^{2 - }}}} - 2F \cdot {\Phi _E}) = {\mu _{{H_2}O}} + 2({\mu _{{e^ - }}} - F \cdot {\Phi _A})\)

Rearranging equation (5) gives:

(6)     \({\Phi _A} - {\Phi _E} = \)\({\textstyle{1 \over {2F}}}\)\(({\mu _{{H_2}O}} + 2{\mu _{{e^ - }}} - {\mu _{{H_2}}} - {\mu _{{O^{2 - }}}})\)

Hence we can calculate the electric potential difference between the anode and the cathode:

(7)     \({\Phi _C} - {\Phi _A} = \)\({\textstyle{1 \over {2F}}}\)\(({\mu _{{H_2}}} + {\textstyle{1 \over 2}}{\mu _{{O_2}}} + {\mu _{{H_2}O}})\)

Assuming that the gases behave like ideal gases, we can write for the chemical potential:

(8)     \(\mu (T,p) = {\mu ^o}(T) + RT \cdot \ln ({\textstyle{p \over {{p_o}}}}) + RT \cdot \ln ({x_i})\)

xi is the mole fraction of component i, mo(T) is the chemical potential per mole of an ideal gas at po = 1 bar.

Substituting (8) in (7), we can write:

(9)     \({\Phi _C} - {\Phi _A} = {\textstyle{1 \over {2F}}}({\mu _{{H_2}}}^o + {\textstyle{1 \over 2}}{\mu _{{O_2}}}^o - {\mu _{{H_2}O}}^o) + {\textstyle{{RT} \over {2F}}} \cdot \ln ({\textstyle{{{x_{{H_2}}}\sqrt {{x_{{O_2}}}} } \over {{x_{{H_2}O}}}}}) + {\textstyle{{RT} \over {4F}}} \cdot \ln ({\textstyle{p \over {{p_0}}}})\)